Canola
Same across treatments:
Emergence
Stand count
Test weight
Yield
Oat
Same across treatments:
Emergence
Stand count
Test weight
Yield
Barley
Same across treatments:
Emergence
Stand count
Test weight
Yield
Pea
Same across treatments:
Stand count
Test weight
Yield
Emergence
Control plots had 13% more individuals than the other treatments
Same in all treatments:
Yield
Protein content
Test weight
Emergence
Stands
Survivorship
Height was greater treatments where dehydrated compost was added at the full rate of application.
Results for our research came with a few shortcomings this season. Biomass samples sent for plant analysis were futile because samples did not survive the trip to the laboratory facilities in Ontario despite our efforts to preserve its entirety.
Allelopathy is the direct or indirect impact on plant individuals, whether they belong or not to the same species. Established as substances composed of secondary metabolites, allelopathy can a) affect growth and yield of another plant and b) develop autotoxicity, where plant individuals’ secrete chemicals that prevent propagation and development of seedlings of same species growth.
Allelopathy can be used as a strategic tool to mitigate chemical weed management. Residues of allelopathic cover crops not only provide benefits to the soil but also help to reduce weed populations during their growth and likely for the cash crops seeded in the season thereafter.
The Canola Council of Canada advises that canola should be sown with high seeding densities and preferably using larger seed size (up to 2.2mm). Moreover, seeding later in the season should be considered rather than seeding on earlier dates. Briefly, greater plant densities produced by high seeding rates compensate for flea beetle leaf damage. More tolerant seedlings to flea beetles have been observed to be affected by seed size and canola sown mid-May to early-June. Late sown less affected by flea beetle damage than canola seeded in late-April to early-May. Currently, there is limited research showing how all these recommendations, acting in conjunction, affect canola production. Therefore, this study aims to evaluate the impact of seeding rate, seed size, and seeding date on flea beetle damage and populations. Furthermore, a split-plot factor analysis will also allow us to examine interaction effects between seeding rate, seed size and seeding date. Further insight on interactions effects will allow us to measure the true flea beetle response to these recommendations, and provide new recommendations based on these possible interactions.
The objective is to evaluate the impact on flea beetle leaf damage and flea beetle population of seeding date (late-April to early-May and second to third week of May), seed size (small, large and unsorted), and seeding rate (112,56 and 168 plant m-2). The seeding date for all these trials had to be pushed further due to weather constraints. Therefore, “early seeding dates correspond to canola sown from the second to the third week of May and “Late” dates correspond to canola sown from the fourth week of May to the first week of June.
Soil samples are sent to two different places, one is a standard lab which will provide you with a soil analysis and fertility recommendations and the other is WARD labs in Kearney Nebraska, which provides you with the same but, unlike the former, it shows you N content through a different method (thus concludes on fertility recommendations based on the N content measured from such method). This method is called Haney test, developed by Rick Haney of United States Department of Agriculture and Agricultural Research Service in Temple, Texas. Moreover, WARD labs gives you results for a phospholipid fatty acid test, which is used to profile different phylla of bacteria and fungi in the soil. Since both tests can recommend you how much N is required in the soil to seed the next crop for the upcoming season, it bears to ask the question, which one is better?
Over the last three years, canola, pea and wheat have been rotated in the same trial and treated under different fertilization rates. Fertilization treatments were set as follows. A) 0% (Control) – N recommendations from standard lab. 100% of the recommended N will be applied. B) N recommendations from the standard lab will be 30%. Then it will be topped up with that recommended by the WARD Haney analysis to equate the total recommended by Haney. C) N recommendations from WARD lab. 100% of the N recommended from the Haney soil test will be added.
The Canola Council of Canada advises that canola should be sown with high seeding densities and preferably using larger seed size (up to 2.2mm). Moreover, seeding later in the season should be considered rather than seeding on earlier dates. Briefly, greater plant densities produced by high seeding rates compensate for flea beetle leaf damage. More tolerant seedlings to flea beetles have been observed to be affected by seed size and canola sown mid-May to early-June. Late sown less affected by flea beetle damage than canola seeded in late-April to early-May. Currently, there is limited research showing how all these recommendations, acting in conjunction, affect canola production. Therefore, this study aims to evaluate the impact of seeding rate, seed size, and seeding date on flea beetle damage and populations. Furthermore, a split-plot factor analysis will also allow us to examine interaction effects between seeding rate, seed size and seeding date. Further insight on interactions effects will allow us to measure the true flea beetle response to these recommendations, and provide new recommendations based on these possible interactions.
The objective is to evaluate the impact on flea beetle leaf damage and flea beetle population of seeding date (late-April to early-May and second to third week of May), seed size (small, large and unsorted), and seeding rate (112,56 and 168 plant m-2)
The objective of this experiment is to observe which fertilizer recommendation (either one provided by an A&L Laboratories soil chemical analysis or one provided by a WARD Laboratories Haney soil test) is best for crops such as wheat, canola and pea.
Most of the soil organic matter is composed of humic substances (Nardi et al. 2002). Humic substances nurture plant cell membrane functions and encourage nutrient uptake. In the past ten years, there has been a growing body of evidence supporting the use of bio-stimulants in agriculture for both horticultural and field crop production systems, where they have been shown to increase root growth, enhanced nutrient uptake, and increase stress tolerance. du Jardin (2015) defined plant bio-stimulants in five categories: 1) microbial inoculants, 2) humic acids, 3) fulvic acids, 4) protein hydrolysates, and 5) amino acids, and seaweed extracts.
Fulvic acid, is of particular interest, as it is a natural chelator and thus helps facilitate migration of metal ions and nutrients across tissue membranes (Sun et al, 2012). It also retains many properties that make it ideal for foliar tank mixes, such as: (a) high solubility under different pH conditions (b) high cation exchange capacity, and (c) recorded absence of antagonistic effects with nutrients or pesticides. Owing to its low molecular weight (a few hundred Daltons), it can easily cross plant tissue membranes, and remains in solution even at high salt concentrations. All of which are considered ideal for foliar nutrient applications.
At the North Peace Applied Research Association, an experiment was designed to determine if foliar applications of Nitrogen with or without additions of fulvic acid have an effect on yield and leaf nitrogen content in canola, field pea and wheat. For field pea, only one treatment was conducted where foliar application of fulvic acid at 0.65 L ac-1 was applied at the 6th node and at the 12th node stage. This treatment was compared against a control where peas were sown in furrow with 13-33-0-15S at 120 lb ac-1. Above ground biomass was collected one week after foliar applications on each crop. For canola and wheat, the experiment was designed as a complete randomized block design with four treatments: (1) Dry urea at 150-175 lb ac-1 treated with fulvic acid at 0.3 L ac-1 applied at seeding, (2) Dry urea at seeding at 80-105 lb ac-1 followed by two foliar applications of liquid urea at 20 L ac-1, (3) Dry urea at 80-105 lb ac-1 treated with fulvic acid at 0.3 L ac-1 at seeding and two foliar applications of liquid urea with fulvic acid at 20 L ac-1 and 0.65 L ac-1, respectively and (4) seeding application of dry urea at 80-105 lb ac-1 treated with fulvic acid at 0.3 L ac-1 followed by two foliar applications of fulvic acid with a nitrogen, calcium and magnesium supplement (Nitro 18) at 0.65 L ac-1 and 20 L ac-1, respectively. In addition, a control treatment was included consisting of a sole application of dry urea at seeding at 150-175 lb ac-1.
To combat the effects of flea beetle damage, the Canola Council of Canada advises that canola be sown at higher seeding densities, larger seed size, and later in the season. Research has shown the benefits of each practice independently, but there exists limited literature on how all these recommendations, acting in conjunction, affect canola production. Through this experiment, by assessing interaction effects we may be capable of measuring the true flea beetle response to these recommendations and provide new recommendations based on these possible interactions. 2020 was the first year of this three-year study, and canola growth was greatly limited at NPARA due to weather-induced stress. Through the years to come, however, the accumulation of data across multiple sites will provide for a robust assessment of these cultural practices.
The experiment was carried out at three sites across northern Alberta: NPARA, Mackenzie Applied Research Association, and Smoky Applied Research and Demonstration Association, and set up as a four-replicate, split plot analysis. The objective of the flea beetle canola trial was to evaluate the impact of seeding date, seed size, and seeding rate on flea beetle leaf damage and flea beetle population:
Along with total flea beetle counts, counts of each particular species was recorded. Other dependent factors assessed include percent damage of seedlings up to two leaf stage, percent of planted canola to reach maturity, and harvest yield.
Knowing the levels of nitrogen in your soil provides a base in which one can confidently decide on the amount of fertilizer that must be applied to achieve a desired yield. Similarly, being conscious of carbon levels in soil provides an indication of amendments required, such as manure or green manure (cover crops). To know how much N is available to the plant, a standard soil chemical test exposes soil samples from the field to a salt solution. The cations from the salt solution compete with cations on clay mineral surface exchange sites, thereby releasing N ions in solution. Extraction of nitrogen and/or carbon can also be achieved by combustion, where the soil samples are burned, and the emanating smoke is tested for C and N content. Soil chemical analyses will provide results for C as percentage of organic matter (%OM) and N as either ammonium (NH4+) and/or nitrate (NO3-) ions. The Haney soil analysis test, developed by Rick Haney at United States Department of Agriculture research station in Temple, Texas, is an alternative test to the standard soil chemical analyses for carbon and nitrogen. The Haney soil test replaces a salt solution with water as the extraction medium.
This project investigates methods to lower input costs and maximize profit, not necessarily yield. The rate of fertilizer applied to a crop should influence its growth and the amount of C and N readily available for the season. Cash crops such as canola, pea, and wheat were selected and sown under three different fertility levels (no fertilizer, 30%, and a 100% of the nitrogen rates recommended by the Haney soil test). This experiment was treated as a randomized complete block design and replicated four times. This trial will be conducted again in 2021.
Canola
There was no significant difference in canola yield when subject to either 0%, 30%, or 100% of the Haney soil test recommended fertilization levels (P=0.13). Applying 0% of the recommended nitrogen led to the lowest yield of 6.8 bu/ac; applying 100% led to the highest, 8.3 bu/ac. The C.V. is 54.8, too high for results to be accepted as reliable. As with other experiments, this is likely due to weather-induced stress.
Field Pea
Treatment yields all fell within the range of 6-9 bu/acre. There was no significant difference in pea yields when subject to either 0%, 30%, or 100% of the Haney soil test nitrogen recommendations (P=0.4). As with canola, the coefficient of variation coinciding with the pea yield analysis was high at 28.4. Consequently, the results are unlikely to be indicative of true treatment effects.
Spring Wheat
The mean weight yields from each of the three treatments spanned two bushels/acre (50 bu/ac to 52 bu/acre). Similarly, test weight values for each treatment were nearly the same, 63-64 lb/bu. There was no significant difference in wheat yield regardless of the level of nitrogen applied (P=0.98). Likewise, test weight values were not significantly different (P=0.47), nor were protein contents (P=0.85).
In-Furrow Amendments
Four different in-furrow Alpine fertilizers were applied to CS 2000 RR canola plots and the yields analyzed. In-furrow applications coincided with seeding, treatments included: G22 – 20 L/ac, F18 Max – 0.5 L/ac, K20-S – 4 L/ac, K24 – 4 L/ac, and urea in furrow – 32.61 lb/ac.
F18 Max in-furrow fertilizer led to the greatest canola yield relative to the other products used in the trial (P=0.002). For said treatment, yield was 4.7 bu/acre. Untreated, K20-S, and G22 treatments led to similar yields, all between 2.4-3.3 bu/acre. The lowest yielding canola was that subject to K24 fertilizer, producing 2.1 bu/acre.
Foliar Amendments
Five foliar Alpine fertilizers were applied to CS 2000 RR canola plots and the yields measured. Foliar applications were carried out on June 5. Fertilizer treatments in this experiment were: F18 Max – 2 L/ac, 6-20-3-1S – 20 L/ac, 6-20-3 – 20 L/ac, 7-21-3-1S – 20 L/ac., and Microbolt (Mo) – 18 g/ac.
There were no significant differences in canola yield regardless of the foliar-applied fertilizer used (P=0.16). The yield values ranged from 1.25 bu/acre to 5 bu/acre. The coefficient of variation is 60.5, indicating that values contributing to the means were highly dispersed, likely due to weather-induced stress throughout this wet season.