Same in all treatments:
Yield
Protein content
Test weight
Emergence
Stands
Survivorship
Height was greater treatments where dehydrated compost was added at the full rate of application.
Results for our research came with a few shortcomings this season. Biomass samples sent for plant analysis were futile because samples did not survive the trip to the laboratory facilities in Ontario despite our efforts to preserve its entirety.
Allelopathy is the direct or indirect impact on plant individuals, whether they belong or not to the same species. Established as substances composed of secondary metabolites, allelopathy can a) affect growth and yield of another plant and b) develop autotoxicity, where plant individuals’ secrete chemicals that prevent propagation and development of seedlings of same species growth.
Allelopathy can be used as a strategic tool to mitigate chemical weed management. Residues of allelopathic cover crops not only provide benefits to the soil but also help to reduce weed populations during their growth and likely for the cash crops seeded in the season thereafter.
CWRS wheat
Emergence between AAC Brandon and CDC Silas was the same (P=0.0015). The other varieties had more emergence compared to the last mentioned but they were the same between each other. Yield (P=0.0641), test weight (P=0.7729), protein (P=0.7756) was the same across all treatments. Overall, differences among wheat varieties had no influence in yield, test weight or protein content.
CRS wheat
Emergence (P=0.0687), test weight (P=0.5102) and protein content (P=0.8404) were the same across all CPS varieties. Yield from AAC Foray UVB, AAC Goodwin, CS Accelerate and AAC Crossfield surpassed AAC Penhold by 44, 29, 41 and 37% respectively (P=0.0139). It can be argued that these varieties do provide superior yield, through there is no difference in yield between each other.
Number of emergent individuals was affected by seeding rates regardless of wheat varieties (P=0.0031). As such, number of emergent individuals was 28 and 32% greater at 35 (P=0.0065) and 40 (P=0.0019) plants per squared foot respectively compared to lower seeding rates. Moreover, combined emergence at seeding rates of 30, 35 and 40 plants per foot was 66% greater than at 25 plants per foot (P<0.0001).
Height was influenced by both variety and seeding rate (P=0.0002). Tallest stands were found in plots sown with AAC Brandon and AAC Redberry at 40 plants per squared foot, whereas shortest individuals were found in AAC Redberry at 25 and 30 plants per squared foot. Indeed, AAC Brandon and AAC Wheatland stands were taller compared to the other varieties by 43 (P<0.0001) and 13% (P=0.0029) respectively. Moreover, those plants sown at 35 and 40 plants per squared foot showed to be taller by 13 (P= 0.0006) and 50% (P<0.0001).
Even though emergence and height were impacted by wheat variety and seeding rate , there was no effect with either on test weight (P=0.8181), yield (P=0.3436) and protein content (P=0.2174). Yield especially was the same even when AAC Redberry was sown two weeks after the other varieties.
In conclusion, it is possible height and emergence are impacted by variety and seeding rate but eventually yield, test weight and protein content is the same despite the wheat varieties selected and under different seeding rates.
Soil samples are sent to two different places, one is a standard lab which will provide you with a soil analysis and fertility recommendations and the other is WARD labs in Kearney Nebraska, which provides you with the same but, unlike the former, it shows you N content through a different method (thus concludes on fertility recommendations based on the N content measured from such method). This method is called Haney test, developed by Rick Haney of United States Department of Agriculture and Agricultural Research Service in Temple, Texas. Moreover, WARD labs gives you results for a phospholipid fatty acid test, which is used to profile different phylla of bacteria and fungi in the soil. Since both tests can recommend you how much N is required in the soil to seed the next crop for the upcoming season, it bears to ask the question, which one is better?
Over the last three years, canola, pea and wheat have been rotated in the same trial and treated under different fertilization rates. Fertilization treatments were set as follows. A) 0% (Control) – N recommendations from standard lab. 100% of the recommended N will be applied. B) N recommendations from the standard lab will be 30%. Then it will be topped up with that recommended by the WARD Haney analysis to equate the total recommended by Haney. C) N recommendations from WARD lab. 100% of the N recommended from the Haney soil test will be added.
The objective of this experiment is to observe which fertilizer recommendation (either one provided by an A&L Laboratories soil chemical analysis or one provided by a WARD Laboratories Haney soil test) is best for crops such as wheat, canola and pea.
Is it possible to seed wheat earlier in the season? If so, can you seed at temperatures between 0 and 10°C? Would cold air and soil temperatures affect yield, test weight, thousand kernel weight and emergence? This experiment aims to answer all of these questions. Two hard red spring wheat varieties (AAC Brandon and AAC Connery) were selected to be seeded as soon as ground temperature was above 0°C (May 6 for the 2021 growing season) at 56.6, 84.9 and 113.2 plants ft-2. Seeding of the same varieties at the same seeding rates also took place later in the season when ground temperatures were above 10°C (May 20).
Most of the soil organic matter is composed of humic substances (Nardi et al. 2002). Humic substances nurture plant cell membrane functions and encourage nutrient uptake. In the past ten years, there has been a growing body of evidence supporting the use of bio-stimulants in agriculture for both horticultural and field crop production systems, where they have been shown to increase root growth, enhanced nutrient uptake, and increase stress tolerance. du Jardin (2015) defined plant bio-stimulants in five categories: 1) microbial inoculants, 2) humic acids, 3) fulvic acids, 4) protein hydrolysates, and 5) amino acids, and seaweed extracts.
Fulvic acid, is of particular interest, as it is a natural chelator and thus helps facilitate migration of metal ions and nutrients across tissue membranes (Sun et al, 2012). It also retains many properties that make it ideal for foliar tank mixes, such as: (a) high solubility under different pH conditions (b) high cation exchange capacity, and (c) recorded absence of antagonistic effects with nutrients or pesticides. Owing to its low molecular weight (a few hundred Daltons), it can easily cross plant tissue membranes, and remains in solution even at high salt concentrations. All of which are considered ideal for foliar nutrient applications.
At the North Peace Applied Research Association, an experiment was designed to determine if foliar applications of Nitrogen with or without additions of fulvic acid have an effect on yield and leaf nitrogen content in canola, field pea and wheat. For field pea, only one treatment was conducted where foliar application of fulvic acid at 0.65 L ac-1 was applied at the 6th node and at the 12th node stage. This treatment was compared against a control where peas were sown in furrow with 13-33-0-15S at 120 lb ac-1. Above ground biomass was collected one week after foliar applications on each crop. For canola and wheat, the experiment was designed as a complete randomized block design with four treatments: (1) Dry urea at 150-175 lb ac-1 treated with fulvic acid at 0.3 L ac-1 applied at seeding, (2) Dry urea at seeding at 80-105 lb ac-1 followed by two foliar applications of liquid urea at 20 L ac-1, (3) Dry urea at 80-105 lb ac-1 treated with fulvic acid at 0.3 L ac-1 at seeding and two foliar applications of liquid urea with fulvic acid at 20 L ac-1 and 0.65 L ac-1, respectively and (4) seeding application of dry urea at 80-105 lb ac-1 treated with fulvic acid at 0.3 L ac-1 followed by two foliar applications of fulvic acid with a nitrogen, calcium and magnesium supplement (Nitro 18) at 0.65 L ac-1 and 20 L ac-1, respectively. In addition, a control treatment was included consisting of a sole application of dry urea at seeding at 150-175 lb ac-1.
Seeding spring wheat early has the potential to increase yield, improve grain quality, and result in earlier maturity. Early seeding may allow wheat to avoid/miss the damage caused by wheat midge and Fusarium head blight; be better suited to defend against weed competition, allowing for less pesticide usage; and be harvested earlier and at a higher grade due to the reduced risk of late season frost events and damp weather at harvest.
Performed across seven sites throughout Alberta, the ultra-early wheat trial was designed to assess whether there is an advantage to seeding spring wheat ahead of schedule. By seeding wheat early when soil temperatures range 2-6 Celsius, rather than the norm of 10-12 Celsius, might yield increase? Further, are test weight and protein values at all affected? This experiment compares wheat growth subject to three levels of differentiation: date planted, crop variety, and seeding rate. On two dates, early and normal (where normal refers to when local farmers will commonly seed their spring wheat), two varieties of wheat, AAC Brandon and AAC Connery, were sown at rates of 19, 28, and 37 seed/sq. ft., respectively. The experiment followed a complete randomized block design having treatments replicated four times.
Knowing the levels of nitrogen in your soil provides a base in which one can confidently decide on the amount of fertilizer that must be applied to achieve a desired yield. Similarly, being conscious of carbon levels in soil provides an indication of amendments required, such as manure or green manure (cover crops). To know how much N is available to the plant, a standard soil chemical test exposes soil samples from the field to a salt solution. The cations from the salt solution compete with cations on clay mineral surface exchange sites, thereby releasing N ions in solution. Extraction of nitrogen and/or carbon can also be achieved by combustion, where the soil samples are burned, and the emanating smoke is tested for C and N content. Soil chemical analyses will provide results for C as percentage of organic matter (%OM) and N as either ammonium (NH4+) and/or nitrate (NO3-) ions. The Haney soil analysis test, developed by Rick Haney at United States Department of Agriculture research station in Temple, Texas, is an alternative test to the standard soil chemical analyses for carbon and nitrogen. The Haney soil test replaces a salt solution with water as the extraction medium.
This project investigates methods to lower input costs and maximize profit, not necessarily yield. The rate of fertilizer applied to a crop should influence its growth and the amount of C and N readily available for the season. Cash crops such as canola, pea, and wheat were selected and sown under three different fertility levels (no fertilizer, 30%, and a 100% of the nitrogen rates recommended by the Haney soil test). This experiment was treated as a randomized complete block design and replicated four times. This trial will be conducted again in 2021.
Canola
There was no significant difference in canola yield when subject to either 0%, 30%, or 100% of the Haney soil test recommended fertilization levels (P=0.13). Applying 0% of the recommended nitrogen led to the lowest yield of 6.8 bu/ac; applying 100% led to the highest, 8.3 bu/ac. The C.V. is 54.8, too high for results to be accepted as reliable. As with other experiments, this is likely due to weather-induced stress.
Field Pea
Treatment yields all fell within the range of 6-9 bu/acre. There was no significant difference in pea yields when subject to either 0%, 30%, or 100% of the Haney soil test nitrogen recommendations (P=0.4). As with canola, the coefficient of variation coinciding with the pea yield analysis was high at 28.4. Consequently, the results are unlikely to be indicative of true treatment effects.
Spring Wheat
The mean weight yields from each of the three treatments spanned two bushels/acre (50 bu/ac to 52 bu/acre). Similarly, test weight values for each treatment were nearly the same, 63-64 lb/bu. There was no significant difference in wheat yield regardless of the level of nitrogen applied (P=0.98). Likewise, test weight values were not significantly different (P=0.47), nor were protein contents (P=0.85).
This trial compares wheat subject to differing combinations of in-furrow and foliar applied nitrogen (N) and fulvic acid (FA). Yield, test weight, and protein content was assessed. The trial will be repeated in 2021 and 2022.
There were no significant differences between the measured yields (P=0.04). Similarly, all treatments (control; soil applied nitrogen + fulvic acid; soil applied nitrogen + fulvic acid AND foliar applied nitrogen + fulvic acid) exhibited test weights too similar to be regarded as different by the statistical analysis. Test weight (P=0.52) values ranged only one lb/bu, that is, between 63.5-64 lb/bu. No significant differences were found in protein content (P=0.09).